Oryzias javanicus as a Bioindicator in Southeast Asian Intertidal Waters: Integrating Bibliometric Mapping with Ecotoxicological Evidence
DOI:
https://doi.org/10.63385/sadr.v1i2.342Keywords:
Oryzias javanicus, Bioindicator, Intertidal Waters, Southeast Asia, EcotoxicologyAbstract
This study assesses the suitability of Oryzias javanicus as a bioindicator for Southeast Asian intertidal waters by combining bibliographic network mapping with laboratory and field ecotoxicology to reveal how mechanistic, reproductive, developmental, and pathology endpoints align with estuarine research in Malaysia, Indonesia, and Thailand. The objectives were to map the structure and evolution of Oryzias research; extract biological insights on life stage, population structure, and habitat use relevant to monitoring; evaluate ecotoxicological endpoints that provide decision ready indicators; assess the alignment of these endpoints with sustainability goals in intertidal systems; and derive SWOT and TOWS strategies. The mapping resolved four clusters with a clear chronology. Environmental exposure and early life stages anchor the estuarine use case, while organ pathology and disease consolidate outcome measures. More recent work concentrates on mechanistic biomarkers and endocrine endpoints that are compatible with regulatory testing. Across clusters, O. javanicus functions as the hub that links field exposures with laboratory inference. The discussion synthesizes these signals into a three module monitoring design. First, quarterly embryo to juvenile assays target metals, herbicides, pharmaceuticals, nanoparticles, and microplastics with LC50 and cardiac endpoints. Second, semi-annual adult histopathology and reproductive assessments track chronic risk and fecundity. Third, an annual disease and microbiome panel captures co-occurring microbial hazards. SWOT and TOWS analyses highlight strengths in regional validation and euryhalinity, identify weaknesses in omics resources, and convert them into strategies for reference lines, mixture realistic assays, and habitat coupled metrics.
References
[1] Roberts, T.R., 1998. Systematic observations on tropical Asian medakas or ricefishes of the genus Oryzias, with descriptions of four new species. Ichthyological Research. 45(3), 213–224. DOI: https://doi.org/10.1007/BF02673919
[2] Hassan, I.M., Ibrahim, W.N., Mohamat-Yusuff, F., et al., 2020. Biochemical constituent of Ginkgo biloba (seed) 80% methanol extract inhibits cholinesterase enzymes in Javanese medaka (Oryzias javanicus) model. Journal of Toxicology. 2020, 8815313. DOI: https://doi.org/10.1155/2020/8815313
[3] Hassan, I.M., Ibrahim, W.N., Mohamat-Yusuff, F., et al., 2021. Neuroprotective and antioxidant effect of Curcuma longa (rhizome) methanolic extract on SH-SY5Y cells and Javanese medaka. Pakistan Journal of Pharmaceutical Sciences. 34(1), 47–56.
[4] Termvidchakorn, A., Magtoon, W., 2008. Development and identification of the ricefish Oryzias in Thailand. ScienceAsia. 34(4), 416–423. DOI: https://doi.org/10.2306/scienceasia1513-1874.2008.34.416
[5] Yusof, S., Ismail, A., Koito, T., et al., 2012. Occurrence of two closely related ricefishes, Javanese medaka (Oryzias javanicus) and Indian medaka (O. dancena) at sites with different salinity in Peninsular Malaysia. Environmental Biology of Fishes. 93(1), 43–49. DOI: https://doi.org/10.1007/s10641-011-9888-x
[6] Formacion, M.J., Uwa, H., 1985. Cytogenetic studies on the origin and species differentiation of the Philippine medaka, Oryzias luzonensis. Journal of Fish Biology. 27(3), 285–291. DOI: https://doi.org/10.1111/j.1095-8649.1985.tb04030.x
[7] Roesma, D.I., Tjong, D.H., Janra, M.N., et al., 2022. DNA barcoding of freshwater fish in Siberut Island, Mentawai Archipelago, Indonesia. Biodiversitas. 23(4), 1795–1806. DOI: https://doi.org/10.13057/biodiv/d230411
[8] Mokodongan, D.F., Utama, I.V., Nagano, A.J., et al., 2025. Rediscovery of Oryzias hubbsi with notes on its reproductive isolation with O. javanicus. Ichthyological Research. 72(2), 252–258. DOI: https://doi.org/10.1007/s10228-024-00976-y
[9] Horie, Y., Yap, C.K., 2025. Effects of methimazole on the thyroid hormone system in Japanese medaka (Oryzias latipes) larvae. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology. 297, 110296. DOI: https://doi.org/10.1016/j.cbpc.2025.110296
[10] Chihaya, Y., Horie, Y., 2025. Effect of emergency contraception (ulipristal acetate) on growth, sexual differentiation, and reproduction in Oryzias latipes. Environmental Toxicology and Pharmacology. 118, 104786. DOI: https://doi.org/10.1016/j.etap.2025.104786
[11] Wahyudewantoro, G., 2017. The fish diversity of mangrove waters in Lombok Island, West Nusa Tenggara, Indonesia. Biodiversitas. 19(1), 71–76. DOI: https://doi.org/10.13057/biodiv/d190112
[12] Pertiwi, M.P., Kholis, N., Patria, M.P., et al., 2019. Fish community structure in the mangrove forest of Panjang Island, Banten Bay, Banten, Indonesia. Journal of Physics: Conference Series. 1402(3), 033066. DOI: https://doi.org/10.1088/1742-6596/1402/3/033066
[13] Krumme, U., Grinvalds, K., Zagars, M., et al., 2015. Tidal, diel and lunar patterns in mangrove creek fish assemblages from southwest Thailand. Environmental Biology of Fishes. 98(6), 1671–1693. DOI: https://doi.org/10.1007/s10641-015-0393-5
[14] Yap, C.K., Ismail, A.B., Koyama, J., et al., 2009. A preliminary study on the concentrations of Cu and Zn in Java medaka Oryzias javanicus and sediments collected from estuaries in Peninsular Malaysia. Asian Journal of Microbiology, Biotechnology and Environmental Sciences. 11(2), 241–246.
[15] Andriani, I., Litaay, M., Sartika, et al., 2019. Medaka fish Oryzias javanicus Bleeker as bio-indicator of lead content in waters. Journal of Physics: Conference Series. 1341(2), 022028. DOI: https://doi.org/10.1088/1742-6596/1341/2/022028
[16] Litaay, M., Fadliah, A.I., Andriani, I., et al., 2019. Heavy metal cadmium (Cd) content in the medaka fish Oryzias javanicus Bleeker. IOP Conference Series: Earth and Environmental Science. 279(1), 012028. DOI: https://doi.org/10.1088/1755-1315/279/1/012028
[17] Hardianto, E., Hirayama, M., Wijayanti, D.P., et al., 2023. Molecular ecology of the Javanese ricefish, Oryzias javanicus (Bleeker): Genetic divergence along the Indonesian Archipelago. Marine and Freshwater Research. 74(15), 1314–1323. DOI: https://doi.org/10.1071/MF23129
[18] Ngamniyom, A., Duangjai, W., Racharak, P., et al., 2022. Mitochondrial variation of wild populations of two brackish ricefish in Thailand. Agriculture and Natural Resources. 56(4), 857–866. DOI: https://doi.org/10.34044/j.anres.2022.56.4.20
[19] Ngamniyom, A., Sriyapai, T., Sriyapai, P., et al., 2021. Diversity of gut microbes in freshwater and brackish water ricefish (Oryzias minutillus and O. javanicus) from Southern Thailand. Agriculture and Natural Resources. 55(2), 311–318.
[20] Ngamniyom, A., Sriyapai, T., Sriyapai, P., et al., 2020. Introduction of encysted metacercarial Stephanostomum sp. in Javanese ricefish (Oryzias javanicus) and bacterial diversity of encysts from mangrove swamps of Trang Province, Thailand. Songklanakarin Journal of Science and Technology. 42(1), 42–49. DOI: https://doi.org/10.14456/sjst-psu.2020.7
[21] Ibrahim, M.A., Zulkifli, S.Z., Amal, M.N.A., et al., 2021. Reproductive toxicity of 3,4-dichloroaniline on Javanese medaka (Oryzias javanicus). Animals. 11(3), 798. DOI: https://doi.org/10.3390/ani11030798
[22] Ibrahim, M.A., Zulkifli, S.Z., Amal, M.N.A., et al., 2020. Embryonic toxicity of 3,4-dichloroaniline on Javanese medaka. Toxicology Reports. 7, 1039–1045. DOI: https://doi.org/10.1016/j.toxrep.2020.08.011
[23] Ismail, A., Yusof, S., 2011. Effect of mercury and cadmium on early life stages of Java medaka (Oryzias javanicus). Marine Pollution Bulletin. 63(5–12), 347–349. DOI: https://doi.org/10.1016/j.marpolbul.2011.02.014
[24] Khodadoust, D., Ismail, A.B., 2014. Metallothionein-like protein levels in Java medaka exposed to cadmium. Walailak Journal of Science and Technology. 11(10), 883–893.
[25] Khodadoust, D., Ismail, A.B., Zulkifli, S.Z., et al., 2013. Short time effect of cadmium on juveniles and adults of Java medaka. Life Science Journal. 10(1), 1857–1861.
[26] Kamarudin, N.A., Zulkifli, S.Z., Amal, M.N.A., et al., 2020. Herbicide diuron as endocrine disrupting chemicals through histopathological analysis in gonads of Javanese medaka. Animals. 10(3), 525. DOI: https://doi.org/10.3390/ani10030525
[27] Mohamat-Yusuff, F.F., Ab Ghafar, S.-N., Zulkifli, S.Z., et al., 2018. Acute toxicity test of copper pyrithione on Javanese medaka and behavioural stress symptoms. Marine Pollution Bulletin. 127, 150–153. DOI: https://doi.org/10.1016/j.marpolbul.2017.11.046
[28] Hardiana, A.D., Yaqin, K., Rahim, S.W., 2024. Detection of triclosan pollutants adsorbed on polypropylene microplastics using biomarkers in embryos of Oryzias javanicus. Journal of Sustainability Science and Management. 19(10), 115–132. DOI: https://doi.org/10.46754/jssm.2024.10.010
[29] Yamindago, A., Lee, N., Lee, N., et al., 2021. Fluoxetine in the environment may interfere with neurotransmission and endocrine systems of aquatic animals. Ecotoxicology and Environmental Safety. 227, 112931. DOI: https://doi.org/10.1016/j.ecoenv.2021.112931
[30] Usman, S., Abdull Razis, A.F., Khozirah, S.B., et al., 2021. Polystyrene microplastics exposure: Histological alterations and neurotoxicity in Javanese medaka. International Journal of Environmental Research and Public Health. 18(18), 9449. DOI: https://doi.org/10.3390/ijerph18189449
[31] Usman, S., Abdull Razis, A.F., Khozirah, S.B., et al., 2022. Polystyrene microplastics induce gut microbiome and metabolome changes in Javanese medaka. Toxicology Reports. 9, 1369–1379. DOI: https://doi.org/10.1016/j.toxrep.2022.05.001
[32] Amin, N., Zulkifli, S.Z., Amal, M.N.A., et al., 2021. Toxicity of zinc oxide nanoparticles on embryos of Javanese medaka. Animals. 11(8), 2170. DOI: https://doi.org/10.3390/ani11082170
[33] Amin, N., Vedi, F., Wais, M.N., et al., 2024. Developmental toxicity of zinc oxide nanoparticles on early life stage of Java medaka. Pertanika Journal of Tropical Agricultural Science. 47(2), 575–590. DOI: https://doi.org/10.47836/pjtas.47.2.16
[34] Amal, M.N.A., Zarif, S.T., Suhaiba, M.S., et al., 2018. Effects of fish gender on susceptibility to Streptococcus agalactiae infection in Javanese medaka. Microbial Pathogenesis. 114, 251–254. DOI: https://doi.org/10.1016/j.micpath.2017.11.069
[35] Amal, M.N.A., Ismail, A.B., Saad, M.Z.B., et al., 2019. Streptococcus agalactiae infection in Javanese medaka model. Microbial Pathogenesis. 131, 47–52. DOI: https://doi.org/10.1016/j.micpath.2019.03.034
[36] Amal, M.N.A., Roseli, M.F.A., Sutra, J., et al., 2019. Javanese medaka as a model organism for aeromoniasis and vibriosis study in fish. Pertanika Journal of Tropical Agricultural Science. 42(3), 1049–1065.
[37] Muzaki, F.K., Saptarini, D., Ibadah, A.S., 2019. Juvenile and small fish diversity in mangroves of different root types in the Labuhan coastal area, Bangkalan, Indonesia. Biodiversitas. 20(6), 1537–1543. DOI: https://doi.org/10.13057/biodiv/d200607
[38] Yusof, S., Ismail, A., Alias, M.S., 2014. Effect of glyphosate-based herbicide on early life stages of Java medaka. Marine Pollution Bulletin. 85(2), 494–498. DOI: https://doi.org/10.1016/j.marpolbul.2014.03.022
[39] Aziz, F.Z.A., Zulkifli, S.Z., Mohamat-Yusuff, F.F., et al., 2017. Histological study on mercury-induced gonadal impairment in Javanese medaka. Turkish Journal of Fisheries and Aquatic Sciences. 17(3), 621–627. DOI: https://doi.org/10.4194/1303-2712-v17_3_18
[40] Puspitasari, R., Purbonegoro, T., Putri, D.I., 2018. Short time effect of cadmium and copper on Java medaka as bioindicator for ecotoxicological studies. AIP Conference Proceedings. 2026, 020015. DOI: https://doi.org/10.1063/1.5064975
[41] Hardiana, D., Yaqin, K., Irmawati, Y., et al., 2021. Effects of the antibiotic erythromycin on Oryzias javanicus in gender perspective. IOP Conference Series: Earth and Environmental Science. 860(1), 012011. DOI: https://doi.org/10.1088/1755-1315/860/1/012011
Downloads
License
Copyright (c) 2025 Chee Kong Yap,Yoshifumi Horie

This work is licensed under a Creative Commons Attribution 4.0 International License.
PDF